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a b s t r a c t

A meta-heuristic algorithm called harmony search (HS), mimicking the improvisation process of music
players, has been recently developed. The HS algorithm has been successful in several optimization prob-
lems. The HS algorithm does not require derivative information and uses stochastic random search
instead of a gradient search. In addition, the HS algorithm is simple in concept, few in parameters, and
easy in implementation. This paper presents an improved harmony search (IHS) algorithm based on
exponential distribution for solving economic dispatch problems. A 13-unit test system with incremental
fuel cost function taking into account the valve-point loading effects is used to illustrate the effectiveness
of the proposed IHS method. Numerical results show that the IHS method has good convergence prop-
erty. Furthermore, the generation costs of the IHS method are lower than those of the classical HS and
other optimization algorithms reported in recent literature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The economic dispatch problem (EDP) is related to the optimum
generation scheduling of available generators in a power system to
minimize the total fuel cost while satisfying the load demand and
operational constraints. EDP plays an important role in operation
planning and control of modern power systems [1].

Over the past few years, a number of approaches have been
developed for solving the EDP using classical mathematical pro-
gramming methods [2–8]. Meanwhile, classical optimization
methods are highly sensitive to starting points and frequently
converge to local optimum solution or diverge altogether. Linear
programming methods are fast and reliable but the main disad-
vantage associated with the piecewise linear cost approximation.
Nonlinear programming methods have a problem of convergence
and algorithmic complexity. Newton based algorithm have a
problem in handling large number of inequality constraints [9].

Recently, in order to make numerical methods more convenient
for solving the EDPs, modern optimization techniques [10–15]
have been successfully employed to solve the EDP as a non-smooth
optimization problem. A global optimization technique known as
the harmony search (HS) is one of these modern techniques [16].
HS algorithm proposed in [17] has been recently developed in an
analogy with music improvisation process where musicians in an
ensemble continue to polish their pitches in order to obtain better
harmony. Jazz improvisation seeks to find musically pleasing har-
ll rights reserved.
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mony similar to the optimum design process which seeks to find
optimum solution. The pitch of each musical instrument deter-
mines the aesthetic quality, just as the objective function value is
determined by the set of values assigned to each decision variable
[18]. In addition, HS uses a stochastic random search instead of a
gradient search so that derivative information is unnecessary.
However, recent studies [19–21] have identified some deficiencies
related to the premature convergence in the performance of classi-
cal HS.

In this paper, we propose a novel approach for solving the EDP
using an improved harmony search (IHS) algorithm. An EDP based
on a 13-unit test system [22] with incremental fuel cost function
taking into account the valve-point loading effects is employed
to demonstrate the performance of the IHS. The valve-point load-
ing effects introduce multiple minima in the solution space.
Numerical results obtained with the proposed IHS approach were
compared with classical HS method and other optimization results
reported in literature.

The remainder of this paper is organized as follows. Section 2
explains the formulation of the EDP. In Sections 3 and 4, the
classical HS and the proposed IHS are described. Simulation re-
sults of HS and IHS are presented and compared with those of
other algorithms in Section 5. Lastly, Section 6 outlines our
conclusions.

2. Economic dispatch

The primary concern of an EDP is to minimize the total fuel cost
at thermal power plants subjected to the operating constraints of a
power system. Therefore, it can be formulated mathematically
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with an objective function and two constraints. The equality and
inequality constraints are represented by [23]:

Xn

i¼1

Pi � PL � PD ¼ 0 ð1Þ

Pmin
i 6 Pi 6 Pmax

i ð2Þ

In the power balance criterion, an equality constraint must be
satisfied, as shown in Eq. (1). The generated power should be the
same as the total load demand plus total line losses. The generating
power of each generator should lie between maximum and mini-
mum limits represented by Eq. (2), where Pi is the power of gener-
ator i (in MW); n is the number of generators in the system; PD is
the system’s total demand (in MW); PL represents the total line
losses (in MW) and Pmin

i and Pmax
i are, respectively, the output of

the minimum and maximum operation of the generating unit i
(in MW). The total fuel cost function is formulated as follows [23]:

min f ¼
Xn

i¼1

FiðPiÞ ð3Þ

where Fi is the total fuel cost for the generator unity i (in $/h), which
is defined by equation:

FiðPiÞ ¼ aiP
2
i þ biPi þ ci ð4Þ

where ai, bi and ci are cost coefficients of generator i.
The sequential valve-opening process for multi-valve steam tur-

bines produces ripple like effect in the heat rate curve of the gen-
erator. This effect is included in EDP by superimposing the basic
quadratic fuel cost characteristics with a rectified sinusoidal com-
ponent. In this context, Eq. (4) can be modified as:

~FiðPiÞ ¼ FiðPiÞ þ ei sin fi Pmin
i � Pi

� �� ���� ��� or ð5Þ

~FiðPiÞ ¼ aiP
2
i þ biPi þ ci þ ei sin fi Pmin

i � Pi

� �� ���� ��� ð6Þ

where ei and fi are valve-point loading coefficients of generator i.
Hence, the total fuel cost that must be minimized, according to
Eq. (3), is modified to:

min f ¼
Xn

i¼1

~FiðPiÞ ð7Þ

where ~Fi is the cost function of generator i (in $/h) defined by Eq.
(6). In the case study presented here, we disregarded the transmis-
sion losses, PL (mentioned in Eq. (1)), i.e., in this work PL = 0.

3. Harmony search to solve the economic dispatch problem

This section presents a brief overview of the HS. After, in Section
4, the modification procedure of the proposed IHS algorithm is
detailed.

3.1. Classical harmony search algorithm

Recently, Geem et al. [17] proposed a new HS meta-heuristic
algorithm that was inspired by musical process of searching for a
perfect state of harmony. The harmony in music is analogous to
the optimization solution vector, and the musician’s improvisa-
tions are analogous to local and global search schemes in optimiza-
tion techniques [24]. The HS algorithm does not require initial
values for the decision variables. Furthermore, instead of a gradient
search, the HS algorithm uses a stochastic random search that is
based on the harmony memory considering rate and the pitch
adjusting rate so that derivative information is unnecessary.

In the HS algorithm, musical performances seek a perfect state
of harmony determined by aesthetic estimation, as the optimiza-
tion algorithms seek a best state (i.e. global optimum) determined
by objective function value. It has been successfully applied to var-
ious optimization problems in computation and engineering fields
[17–21,23–28].

The optimization procedure of the HS algorithm consists of
steps 1–5, as follows:

Step 1: Initialize the optimization problem and algorithm
parameters.

Step 2: Initialize the harmony memory (HM).
Step 3: Improvise a new harmony from the HM.
Step 4: Update the HM.
Step 5: Repeat Steps 3 and 4 until the termination criterion has

been satisfied.

The detailed explanation of these steps can be found in
[17,18,24] which are summarized in the following:

Step 1. Initialize the optimization problem and HS algorithm
parameters. First, the optimization problem is specified as
follows:

Minimize f ðxÞ subject to xi 2 Xi; i ¼ 1; . . . ;N

where f(x) is the objective function, x is the set of each decision
variable (xi); Xi is the set of the possible range of values for each
design variable (continuous design variables), that is,
xi,lower 6 Xi 6 xi,upper, where xi,lower and xi,upper are the lower and
upper bounds for each decision variable; and N is the number
of design variables. In this context, the HS algorithm parameters
that are required to solve the optimization problem are also
specified in this step. The number of solution vectors in har-
mony memory (HMS) that is the size of the harmony memory
matrix, harmony memory considering rate (HMCR), pitch
adjusting rate (PAR), and the maximum number of searches
(stopping criterion) are selected in this step. Here, HMCR and
PAR are parameters that are used to improve the solution vec-
tor. In this context, both are defined in Step 3.
Step 2. Initialize the harmony memory (HM). The harmony mem-
ory (HM) is a memory location where all the solution vectors
(sets of decision variables) are stored. In Step 2, the HM matrix,
shown in Eq. (8), is filled with randomly generated solution vec-
tors using a uniform distribution, where

HM ¼

x1
1 x1

2 � � � x1
N�1 x1

N

x2
1 x2

2 � � � x2
N�1 x2

N

..

. ..
. ..

. ..
. ..

.

xHMS�1
1 xHMS�1

2 � � � xHMS�1
N�1 xHMS�1

N

xHMS
1 xHMS

2 � � � xHMS
N�1 xHMS

N

2
66666664

3
77777775
: ð8Þ

Step 3. Improvise a new harmony from the HM. A new harmony
vector, x0 ¼ ðx01; x02; . . . ; x0NÞ, is generated based on three rules:
(i) memory consideration, (ii) pitch adjustment, and (iii) ran-
dom selection. Generating a new harmony is called
‘improvisation’.
In the memory consideration, the value of the first decision var-
iable (x01) for the new vector is chosen from any value in the
specified HM range ðx01 � xHMS

1 Þ. Values of the other decision
variables ðx02; . . . ; x0NÞ are chosen in the same manner. The HMCR,
which varies between 0 and 1, is the rate of choosing one value
from the historical values stored in the HM, while (1 � HMCR)
is the rate of randomly selecting one value from the possible
range of values.

x0i  
x0i 2 x1

i ; x
2
i ; . . . ; xHMS

i

� �
with probability HMCR

x0i 2 Xi with probabilityð1�HMCRÞ

(
ð9Þ



Table 1
Data for the 13 thermal units.

Thermal unit Pmin
i Pmax

i A b c E f

1 0 680 0.00028 8.10 550 300 0.035
2 0 360 0.00056 8.10 309 200 0.042
3 0 360 0.00056 8.10 307 150 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063

10 40 120 0.00284 8.60 126 100 0.084
11 40 120 0.00284 8.60 126 100 0.084
12 55 120 0.00284 8.60 126 100 0.084
13 55 120 0.00284 8.60 126 100 0.084
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After, every component obtained by the memory consideration
is examined to determine whether it should be pitch-adjusted.
This operation uses the PAR parameter, which is the rate of
pitch adjustment as follows:

Pitch adjusting decision for x0i
Yes with probability PAR
No with probabilityð1-PARÞ:

�
ð10Þ

The value of (1 � PAR) sets the rate of doing nothing. If the pitch
adjustment decision for x0i is Yes, then x0i is replaced as follows:

x0i  x0i � r � bw; ð11Þ

where bw is an arbitrary distance bandwidth, r is a random
number generated using uniform distribution between 0 and 1.
In Step 3, HM consideration, pitch adjustment or random selec-
tion is applied to each variable of the new harmony vector in
turn.
Step 4. Update the HM. If the new harmony vector,
x0 ¼ ðx01; x02; . . . ; x0NÞ is better than the worst harmony in the
HM, judged in terms of the objective function value, the new
harmony is included in the HM and the existing worst harmony
is excluded from the HM.
Step 5. Repeat Steps 3 and 4 until the termination criterion has
been satisfied.

4. Improved HS algorithm

HS is good at identifying the high performance regions of the
solution space at a reasonable time, but gets into trouble in per-
forming local search for numerical applications. In order to im-
prove the performance of the HS algorithm and eliminate the
drawbacks lie with fixed values of HMCR and PAR, Mahdavi et al.
[19] proposed an improved harmony search algorithm that uses
variable PAR and bw in improvisation step. Also, Omran and Mahd-
avi [20] proposed a new variant of harmony search, called the glo-
bal best harmony search, in which concepts from swarm
intelligence are borrowed to enhance the performance of HS such
that the new harmony can mimic the best harmony in the HM.

The IHS proposed in this work has exactly the same steps of
classical HS with exception that Step 3, where the IHS dynamically
updates PAR. In this case, PAR is update as follows:

PARðtÞ 1
HMS � N ; ð12Þ

where PAR(t) is the pitch adjusting rate for generation t. In addition,
the Eq. (11) is changed by generation of x0i using an exponential
probability distribution with density function given by [29]:

f ðyÞ ¼ 1
2b

exp
�jy� aj

b

� 	
; �1 6 y 61 with a; b > 0

ð13Þ

It is evident that one can control the variance by changing the
parameters a and b. Generating random numbers using exponen-
tial distribution sequences may provide a good compromise be-
tween the probability of having a large number of small
amplitudes around the current points (fine tuning) and a small
probability of having higher amplitudes, which may allow particles
to move away from the current point and escape from local min-
ima [29].

In the HIS, the x0i is given by:

x0i  x0i þ e � bw; ð14Þ

where e is a random number generated with truncated exponential
distribution in range [�1, 1] with a = 0.30 and b = 1. Eq. (14) is in-
spired in works about the tuning of control parameters in evolu-
tionary algorithms based on probability distributions (see details
in [29–32]).

5. Case study of 13 thermal units and analysis of optimization
results

This case study consisted of 13 thermal units of generation with
the valve-point effects, as given in Table 1. The system data shown
in Table 1 is also available in [22,33]. In this case, the load demand
expected to be determined was PD = 1800 MW.

Each optimization method was implemented in Matlab (Math-
Works). All the programs were run on a 3.2 GHz Pentium IV pro-
cessor with 2 GB of random access memory. In each case study,
50 independent runs were made for each of the optimization
methods involving 50 different initial trial solutions for each opti-
mization method.

The total number of solution vectors in classical HS, i.e., the
HMS, was 15, and the HMCR and the PAR were 0.85 and 0.45,
respectively. In IHS, the setup were HMS, was 15 and the HMCR
was 0.85. In this paper, the optimization approaches are adopted
using 22,500 cost function evaluations in each run.

A key factor in the application of optimization methods is how
the algorithm handles the constraints relating to the problem. In
this work, a penalty-based method inspired in [34] was used. In
this context, to avoid the violation of equality constraint given by
Eq. (1) of the power balance criterion, a repair process is applied
to each solution in order to guarantee that a generated solution
by HS or IHS is feasible. The adopted procedure here is presented
in Fig. 1. After the application of the repair procedure the solution
given by HS or IHS approaches can be evaluated by Eq. (7).

Numerical results obtained for this case study are given in Table
2, which shows that the IHS has both a better economic cost and
lower mean cost than the classical HS. The best results obtained
for solution vector Pi, i = 1,. . .,13 with IHS with minimum cost of
17960.3661 $/h is given in Table 3. Table 4 compares the results
obtained in this paper with those of other studies reported in the
literature. Note that in studied case, the best result reported here
using IHS is comparatively lower than recent studies presented
in literature.

6. Conclusions and future research

Economic dispatch is an important function in the power sys-
tem operation. Different techniques have been reported in the lit-
erature pertaining to EDP [1–15]. In this study, application of HS
and IHS algorithms to solve EDPs has been investigated.



Fig. 1. Constraints handling used in HS and IHS approaches.

Table 2
Convergence results (50 runs) of a case study of 13 thermal units with valve-point
and PD = 1800 MW.

Optimization
method

Maximum
cost ($/h)

Minimum
cost ($/h)

Mean cost
($/h)

Standard
deviation ($/h)

HS 18070.1762 17965.6204 17986.5626 26.3702
IHS 17971.6512 17960.3661 17965.4152 16.9531

Table 3
Best result (50 runs) obtained for the case study using IHS.

Power Generation (MW)

P1 628.3185
P2 149.5994
P3 222.7491
P4 109.8666
P5 60.0000
P6 109.8666
P7 109.8666
P8 109.8666
P9 109.8666
P10 40.0000
P11 40.0000
P12 55.0000
P13 55.0000P13

i¼1Pi 1800.0000

Table 4
Comparison of results for EDP with 13 thermal units.

Optimization technique Case study with
13
thermal units

Cultural differential evolution [35] 17963.94
Chaotic differential evolution with sequential quadratic

programming [36,37]
17963.94

Chaotic particle swarm optimization [38] 17963.96
Differential evolution [34] 17963.83
Genetic algorithm based on differential evolution [39] 17963.83
Hybrid differential evolution [40] 17975.73
Hybrid evolutionary programming with sequential quadratic

programming [41]
17991.03

Hybrid genetic algorithm [42] 17992.92
Improved evolutionary programming [22] 17994.07
Improved genetic algorithm [43] 17963.98
Particle swarm optimization [41] 18030.72
Particle swarm optimization with sequential quadratic

programming [41]
17969.93

Pattern search method [44] 17969.17
Quantum particle swarm optimization [23] 17963.95
Self-tuning hybrid differential evolution [40] 17963.79
Best result of this paper using IHS 17960.3661
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The IHS algorithms ability has been demonstrated using an
illustrative example consisting of 13 thermal units whose incre-
mental fuel cost function takes into account the valve-point load-
ing effects. Moreover, in order to handle constraints effectively, a
constraint treatment mechanism inspired in [34] is devised in cal-
culus of cost function used in HS and IHS approaches. Numerical
results reveal that the IHS algorithm converged to good solutions
in comparison with results using HS and results of recent
literature.

In future work, we plan to study the HS algorithms in multiob-
jective EDPs with units having prohibited zones and valve-point
loading effects.
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